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Entanglement evolution and quantum phase transition of biased s = 1/2 spin-boson model
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The ground state and the spectral structure of lower-lying excited states of a dissipative two-level system
coupled to a sub-Ohmic bath (s = 1/2) with nonzero bias have been studied using the unitary transformation
method. By calculating the ground-state entanglement entropy, the ground-state average of 〈σz〉G, and the static
susceptibility of the two-level system, we explore the nature of the transition (crossover) between the delocalized
and localized state of the two-level system. Furthermore, we calculate the time-dependent expectation 〈σz(t)〉 and
the time evolution of the entanglement entropy to show that, when the system undergoes a transition (crossover)
from the delocalized to the localized state, the time evolution of the two-level system changes from coherent to
decoherent dynamics.
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I. INTRODUCTION

The physics of a quantum two-level system coupled to a
dissipative bosonic environment [spin-boson model (SBM)]
has attracted considerable attention in recent years because
it provides a universal model for numerous physical and
chemical processes [1,2]. The Hamiltonian of the SBM reads
(throughout this paper, we set h̄ = 1)

H = −1

2
�σx + 1

2
εσz +

∑
k

ωkb
†
kbk + 1

2

∑
k

gk(b†k + bk)σz,

(1)

where b
†
k (bk) is the creation (annihilation) operator of the

boson mode with frequency ωk , σx and σz are Pauli matrices
to describe the two-level system, ε is the bias, � is the
bare tunneling, and gk is the coupling between spin and
environment.

The main theoretical interest in the SBM is to understand
how the environment influences the ground state and dynamics
of the two-level system and, in particular, how the dissipation
effect of the environment destroys quantum coherence. The
dynamic properties of the SBM, usually described by the time-
dependent expectation 〈σz(t)〉 = TrS{TrB[ρSB(t)σz]} [ρSB(t)
is the density operator for Hamiltonian H and the subscript
“SB” indicates that it is for the coupled two-level system
and bath], have been studied extensively [1–4]. In this paper,
instead of 〈σz(t)〉, we consider a quantitative description of the
entanglement of the two-level system with the environment
and its dynamic evolution, which may be measured by the von
Neumann entropy or the entanglement entropy [5–8],

E(t) = −TrS[ρS(t) log2 ρS(t)]

= −p+(t) log2 p+(t) − p−(t) log2 p−(t), (2)

p±(t) = 1
2 [1 ± √〈σx(t)〉2 + 〈σy(t)〉2 + 〈σz(t)〉2], (3)

where the subscript “S” of ρS(t) means it is the reduced density
operator for the two-level system. The dynamic evolution
of E(t) is from the initial value E(0) = 0 (no entanglement
between system and environment because of the initial
preparation [4]) at t = 0 to the t → ∞ limit E(∞) = E(G),

where the coupled system and environment are in the ground
state (G) of H .

The effect of the bosonic environment is charac-
terized by a spectral density J (ω) = ∑

k g2
k δ(ω − ωk) =

2αωsω1−s
c θ (ωc − ω) with the dimensionless coupling strength

α and the hard upper cutoff ωc [θ (ωc − ω) is the usual step
function]. The index s accounts for various physical situations:
s = 1 is the Ohmic bath [1–4,7] but s < 1 stands for the
sub-Ohmic bath [1,2,8–11]. As was pointed out by Ref. [8],
the case s = 1/2 is of particular interest because it may be
realized by a charge qubit subject to the electromagnetic
noise of an RLC transmission line. Another motivation is
that, recently, conflicting results have been reported about the
critical behavior of the SBM with a sub-Ohmic bath [12].

In the past few years, the numerical renormalization group
(NRG) method [8,13–16] and the quantum Monte Carlo
method [12] have been used for the sub-Ohmic SBM, and
their main focus is to study the properties of the delocalized-
localized quantum phase transition. Moreover, based on the
noninteracting blip approximation [1], there are claims that the
two-level system might be always localized in the sub-Ohmic
case for zero temperature, thus there should be no coherent
dynamics for the sub-Ohmic bath. Kehrein and Mielke [9]
studied the unbiased (ε = 0) sub-Ohmic SBM to show that
a finite delocalized-localized transition point exists for all
0 < s � 1. In our previous work [17], we studied the biased
(ε �= 0) sub-Ohmic SBM and focused on how the sub-Ohmic
bath influences the dynamics of the two-level system and
destroys the quantum coherence. But the renormalization
effect of the dissipative interaction (the coupling α) on the
effective bias was not taken into account in [17].

As SBM is a quantum many-body system. To study its
physical properties, one must first find its correct ground
state, which should be an entangled many-body state. Then,
the spectral structure of the lower-lying excited states over the
ground state may be obtained and it determines the static and
dynamic properties of the coupled system and environment. In
this work, the analytic approach of Refs. [17–19] is extended
to calculate the static and dynamic properties of the SBM
with sub-Ohmic bath s = 1/2 and finite bias ε �= 0 since
this case may be realized in experiment [8]. A new ground
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state of the SBM, which is different from that of Ref. [17],
is derived and the ground-state energy and entanglement
entropy are calculated. By comparison with the results of
previous papers, we will show that this ground state is quite
close to the real ground state. Because both the ground state
and the spectral structure of the lower-lying excited states
are obtained through our analytic approach, we can calculate
the static susceptibility and the time evolution of entanglement.
Our results will show that for the s = 1/2 sub-Ohmic bath, a
nonzero bias plays an important role in determining the static
properties and quantum dynamics of the SBM.

II. ENTANGLEMENT IN THE GROUND STATE

To find the ground state of the correlated system of spin
and bosons, we present a treatment based on the unitary
transformation approach [17,19,20]: H ′ = exp(S)H exp(−S),
with the generator

S =
∑

k

gk

2ωk

(b†k − bk)[ξkσz + (1 − ξk)σ0]. (4)

Here we introduce in S a constant σ0 and a k-dependent func-
tion ξk; their form will be determined later. The transformation
can be done to the end and the result is

H ′ = H ′
0 + H ′

1 + H ′
2, (5)

H ′
0 = −1

2
η�σx + 1

2

[
ε −

∑
k

g2
k

ωk

σ0(1 − ξk)2

]
σz

+
∑

k

ωkb
†
kbk −

∑
k

g2
k

4ωk

ξk(2 − ξk)

+
∑

k

g2
k

4ωk

σ 2
0 (1 − ξk)2, (6)

H ′
1 = 1

2

∑
k

gk(1 − ξk)(b†k + bk)(σz − σ0)

− 1

2
η�iσy

∑
k

gk

ωk

ξk(b†k − bk), (7)

H ′
2 = −1

2
�σx

(
cosh

{∑
k

gk

ωk

ξk(b†k − bk)

}
− η

)

−1

2
�iσy

(
sinh

{∑
k

gk

ωk

ξk(b†k − bk)

}

− η
∑

k

gk

ωk

ξk(b†k − bk)

)
, (8)

where

η = 〈{0k}| cosh

{∑
k

gk

ωk

ξk(b†k − bk)

}
|{0k}〉

= exp

[
−

∑
k

g2
k

2ω2
k

ξ 2
k

]
(9)

is an average over the vacuum state of the bath |{0k}〉. Note
that in Ref. [17], the second term in H ′

0 is 1
2εσz and the fifth

term is −∑
k

g2
k

4ωk
σ 2

0 (1 − ξk)2, but there is an extra term in

H ′
2: −∑

k

g2
k

2ωk
σ0(1 − ξk)2(σz − σ0). This difference leads to a

different ground state and different physical properties from
those of Ref. [17]. We show the difference below.

Obviously, in H ′
0 the spin and bosons are decoupled and its

spin part can be diagonalized by a unitary matrix U ,

U =
(

u v

v −u

)
, (10)

u = 1√
2

(
1 − ε′

W

)1/2

, v = 1√
2

(
1 + ε′

W

)1/2

, (11)

where W = [ε′2 + η2�2]1/2 and ε′ = ε − ∑
k

g2
k

ωk
σ0(1 − ξk)2

is the effective bias renormalized by the dissipative interaction
α. The diagonalized H ′

0 is

H̃0 = U †H ′
0U = −1

2
Wσz +

∑
k

ωkb
†
kbk

−
∑

k

g2
k

4ωk

ξk(2 − ξk) +
∑

k

g2
k

4ωk

σ 2
0 (1 − ξk)2. (12)

The first-order term H ′
1 is transformed by the unitary matrix

as follows:

H̃1 = U †H ′
1U

= −1

2

∑
k

gk(1 − ξk)(b†k + bk)

[
ε′

W
σz + σ0

]

+ η�

2W
σx

∑
k

gk(1 − ξk)(b†k + bk)

+ 1

2
η�iσy

∑
k

gk

ωk

ξk(b†k − bk). (13)

H ′
2 is transformed as H̃2 = U †H ′

2U and the total Hamiltonian
after transformation is H̃ = H̃0 + H̃1 + H̃2. Up to now,
the transformation has been done exactly and there is no
approximation.

The eigenstate of H̃0 is a direct product: |s〉|{nk}〉, where

|s〉 is the eigenstate of σz: |s1〉 = ( 1
0 ) or |s2〉 = ( 0

1 ), and |{nk}〉
is the eigenstate of bosons with nk phonons for mode k. In
particular, |{0k}〉 is the vacuum state in which nk = 0 for every
k. It is easy to check that the ground state of H̃0 is

|G̃〉 = |s1〉|{0k}〉. (14)

To make |G̃〉 be the ground state of H̃0 + H̃1, σ0 and ξk should
be determined in such a way that

σ0 = − ε′

W
, (15)

ξk = ωk

ωk + W
, (16)

so that

H̃1 = 1

2

∑
k

gk(1 − ξk)(b†k + bk)
ε′

W
[1 − σz]

+ 1

2
η�

∑
k

gk

ωk

ξk[b†k(σx + iσy) + bk(σx − iσy)]
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= 1

2
(1 − σz)

∑
k

Qk(b†k + bk)

+ 1

2

∑
k

Vk[b†k(σx + iσy) + bk(σx − iσy)], (17)

where Qk = λkε
′, Vk = λkη�, and λk = gk/(ωk + W ). Thus,

H̃1|G̃〉 = 0 and |G̃〉 is the ground state of H̃0 + H̃1,
(H̃0 + H̃1)|G̃〉 = Eg|G̃〉, with the ground-state energy

Eg = −1

2
W −

∑
k

g2
k

4ωk

ξk(2 − ξk) +
∑

k

g2
k

4ωk

σ 2
0 (1 − ξk)2.

(18)

It can be checked that Eqs. (15) and (16) can be derived from
the following minimum conditions for Eg:

∂Eg

∂σ0
= 0 and

∂Eg

∂ξk

= 0. (19)

Figure 1 shows our calculated Eg as a function of � for
s = 1/2, α = 0.1, and ε/ωc = 0.01. For comparison, we also
show the difference between Eg of this work and those of
Refs. [17] and [21]: δEg = E[17]

g − Eg and δEg = E[21]
g − Eg .

Obviously, Eg of this work is lower than previous ones, which
is an indication that the ground state of this work is much
closer to the real ground state.

In this work, the main approximation is to approximate the
transformed Hamiltonian as H̃ ≈ H̃0 + H̃1 with the ground
state |G̃〉 Eq. (14) and its energy Eg Eq. (18). The reason
this approximation is justified is that, since 〈G̃|H̃2|G̃〉 = 0
(because of the definition for η Eq. (9)), the terms in H̃2

are related to the multiboson nondiagonal transitions (like
bkbk′ and b

†
kb

†
k′). The contributions of these nondiagonal terms

to the ground-state energy are O(g2
kg

2
k′) and higher. For the

zero-temperature case, the contribution from these multiboson
nondiagonal transition may be dropped safely.

As |G̃〉 is the approximate ground state of H̃ , the approxi-
mate ground state for the original Hamiltonian H is |G〉 =
e−SU |G̃〉 with the same ground-state energy Eg . Besides,

FIG. 1. (Color online) Eg of this work as a function of �

for s = 1/2, α = 0.1, and ε/ωc = 0.01 (solid line, right scale).
For comparison, we also show the difference between Eg of this
work and those of [17] (dashed-dotted line) and [21] (dashed line):
δEg = E[17]

g − Eg and δEg = E[21]
g − Eg .

the ground-state averages 〈σx〉G = 〈G|σx |G〉 and 〈σz〉G =
〈G|σz|G〉 can be calculated by the following differentials of
the ground-state energy:

〈σx〉G = −2∂Eg

∂�
and 〈σz〉G = 2∂Eg

∂ε
. (20)

The differentials in (20) can be done easily with the results

〈σx〉G = η2�/W and 〈σz〉G = −ε′/W. (21)

According to Eqs. (2) and (3), the ground-state entanglement
entropy is

E(G) = −p+(G) log2 p+(G) − p−(G) log2 p−(G), (22)

p±(G) = 1
2 [1 ±

√
〈σx〉2

G + 〈σz〉2
G], (23)

since 〈σy〉G = 0 as H is invariant under σy → −σy . First,
we check the entanglement in some limiting cases. When
α = 0, there is no coupling between the two-level system and
environment, and we have η = 1, ε′ = ε, W = √

�2 + ε2,
and E(G,α = 0) = 0. When � = 0 but ε is finite, there is no
quantum tunneling in the original Hamiltonian (1), and we
have 〈σx〉G = 0, 〈σz〉G = −1, and E(G,� = 0) = 0. When
� = ε = 0, Eqs. (22) and (23) lead to E(G) = 1, which is
not correct [this comes from the fact that Hamiltonian (1) is
undetermined when � = ε = 0]. In the following numerical
calculations for entanglement entropy, we will keep a finite
value for ε, even if it may be very small.

Figure 2 shows our calculated E(G) as a function of � for
the same case as that of Fig. 1. For comparison, the results of
the NRG [8] and of Refs. [17] and [21] are also shown. It is
obvious that the curve of this work is quite close to that of the
NRG [8], but those of Refs. [17,21] are not. Figure 3 shows our
calculated E(G) as functions of � for s = 1/2, α = 0.1, and
several values of ε. For comparison, the results of the NRG are
also shown. The corresponding curves are quantitatively quite
close, especially the curves for very small ε/ωc = 10−5, which
are of the same cusp structure at the maximum of entanglement

FIG. 2. (Color online) E(G) of this work as a function of � for
the same case as that of Fig. 1. For comparison, the results of the
NRG [8] (circle), of [17] (dashed-dotted line), and of [21] (dashed
line) are also shown.
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FIG. 3. (Color online) E(G) of this work (lines) as functions of
� for s = 1/2, α = 0.1, and several values of ε. For comparison, the
results of the NRG (symbols) are also shown.

entropy. These comparisons of our calculated E(G) with the
result of the NRG [8] are evidence that our ground state is
quite close to the real ground state.

In Fig. 4, we show E(G) as functions of α for s = 1/2,
�/ωc = 0.1, and several values of ε. Note that there is also
a cusp structure at the maximum of entanglement entropy for
very small ε/ωc = 10−5, but for larger ε there is a smooth
maximum. We note that the cusp on the curve of ε/ωc = 10−5

is at α = 0.0855.
LeHur et al. [8] claimed that the cusp (maximum) in the

entanglement entropy versus the � (α) relation is an indication
of a second-order quantum phase transition separating a
delocalized and a localized phase for the spin. The nature of
this phase transition may be shown by calculating 〈σz〉G and
〈σx〉G separately; see Fig. 5. For very small bias (ε/ωc = 10−5

in Fig. 5), there is a transition at around α = αc = 0.0855 (the
same place as that of the cusp in Fig. 4): 〈σz〉G is nearly zero

FIG. 4. (Color online) E(G) as functions of α for s = 1/2,
�/ωc = 0.1, and several values of ε. The cusp on the curve of
ε/ωc = 10−5 is at α = 0.0855.

FIG. 5. (Color online) 〈σx〉G and 〈σz〉G as functions of α for
ε/ωc = 10−2 and 10−5.

for α < αc and there is a kink at around αc; for larger α > αc,
〈σz〉G decreases quickly to 〈σz〉G → −1 (solid line in Fig. 5).
In addition, 〈σx〉G decreases smoothly (dashed-double-dotted
line in Fig. 5) with a small change of its slope at around
α = αc = 0.0855. For larger bias (ε/ωc = 10−2 in Fig. 5),
the transition is smoothed out and there is a crossover of
the value of 〈σz〉G from close to zero to −1 (dashed line in
Fig. 5).

The transition at α ≈ αc in Fig. 5 from 〈σz〉G ≈ 0 to
〈σz〉G → −1 comes from the renormalization of the effective
bias,

ε′ = ε

/ [
1 −

∑
k

g2
k

ωkW
(1 − ξk)2

]
, (24)

where Eq. (15) is used. One can see from this equation that
the effective bias ε′ > ε for finite coupling α and in our
calculations ε′ is determined self-consistently. The nature of
this transition will be discussed further in the next section.

III. SUSCEPTIBILITY AND DELOCALIZED-LOCALIZED
TRANSITION

In the preceding section, the ground-state averages of
operators were calculated where the first order H̃1 does
nothing because H̃1|G̃〉 = 0. In this section, we calculate
the time correlation function in the ground state and its
Fourier transformation, the susceptibility, where H̃1 should
play important roles. In Ref. [17], we derived the expressions
for the time correlation function and the imaginary part of the
susceptibility,

χ ′′(ω) =
∫ ∞

−∞
dt exp(iωt)

× 1

2
〈G|[eiHtσze

−iH tσz − σze
iHtσze

−iH t ]|G〉

= (η�)2

W 2

{
�(ω)θ (ω)

[ω − W − �(ω)]2 + �2(ω)

− �(−ω)θ (−ω)

[ω + W + �(−ω)]2 + �2(−ω)

}
, (25)
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where

�(ω) = γ (ω) + ε2

η2�2
γ (ω − W ), (26)

�(ω) = R(ω) + ε2

η2�2
R(ω − W ). (27)

Here R(ω) and γ (ω) are contributions from the first order H̃1,
which are real and imaginary parts of

∑
k V 2

k /(ω − i0+ − ωk)
[note that Vk is the coefficient in H̃1, Eq. (17)],

R(ω) = (η�)2
∑

k

λ2
k

(ω − ωk)

= (η�)2
∫ ∞

0
dω

′ J (ω
′
)

(ω − ω
′)(ω′ + W )2

, (28)

γ (ω) = π (η�)2
∑

k

λ2
kδ (ω − ωk) = πJ (ω)(η�)2

(ω + W )2
. (29)

J (ω) = 2α
√

ωωcθ (ωc − ω) is the spectral density for the s =
1/2 bath.

The static susceptibility χ ′(ω = 0) can be obtained by the
following integral:

χ ′(ω = 0) = 2

π

∫ ∞

0

χ ′′(ω)

ω
dω. (30)

Figure 6 shows the static susceptibility χ ′(0) as functions of
� for s = 1/2, α = 0.1, and several values of ε. One can
see that there is a sharp peak of the curve for very small
ε/ωc = 10−5, and the peak position (around �/ωc ≈ 0.133)
is at the same place as the cusp maximum of the E(G) versus
� relation in Fig. 3. Figure 7 shows χ ′(0) as functions of α for
s = 1/2, �/ωc = 0.1, and several values of ε. A sharp peak
of the curve exists for very small ε/ωc = 10−5, and the peak
position (around α ≈ 0.0855) is at the same place as both the
cusp maximum of the E(G) versus α relation in Fig. 4 and the
transition point αc = 0.0855 in Fig. 5.

The sharp peak on the curves for ε/ωc = 10−5 in Figs. 6
and 7 is an indication that there is a transition of the state

FIG. 6. (Color online) χ ′(0) as functions of � for s = 1/2, α =
0.1, and several values of ε.

FIG. 7. (Color online) χ ′(0) as functions of α for s = 1/2,
�/ωc = 0.1, and several values of ε.

of the coupled two-level system and environment at �/ωc ≈
0.133 when α = 0.1 or at α ≈ 0.0855 when �/ωc = 0.1. As
is shown in Figs. 5 and 7, the transition is very similar to the
appearance of the Anderson localized magnetic moment in the
famous Anderson model [22] when the Coulomb repulsion
on the impurity site is larger than some critical value. The
static susceptibility of the Anderson model is divergent at the
critical point. Figure 8 is a “phase diagram” of the different
regimes in the s = 1/2 SBM when the finite bias is very small,
ε/ωc = 10−5. The solid line separates the localized from the
delocalized state. A similar “phase diagram” was presented in
Ref. [6] by a qualitative discussion.

For larger ε, the peaks of susceptibility in Figs. 6 and 7
become smoother and smoother (note the logarithmic scale of
the vertical axis), which indicates that for larger ε there may
not be a sharp transition but rather a crossover between the
delocalized and localized state.

In our approach, the main approximation we made is the
omission of H̃2. Hence, the validity of our approach should be

FIG. 8. “Phase diagram” of the different regimes in the s = 1/2
SBM when the finite bias is very small, ε/ωc = 10−5. The solid line
separates the delocalized from the localized regime.
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checked, and one way to justify our approach is with Shiba’s
relation [3,23,24],

lim
ω→0

χ ′′(ω)

J (ω)
= π

4
[χ ′(ω = 0)]2, (31)

which should be satisfied for the two-level system coupled to
a heat bath. We have checked this relation and it is satisfied for
all the cases we calculated with error less than 10−4 [17,18].

IV. TIME EVOLUTION OF THE ENTANGLEMENT

Time evolution may be the most interesting problem for
the quantum two-level system interacting with the dissipative

environment and from which one can check whether the
quantum dynamics is coherent or decoherent. The time-
dependent density operator for the coupled two-level system
and bath is ρSB (t): ρSB (t) = e−iHT ρSB (0)eiHt , where ρSB(0)
is the initial density operator and the evolution is governed by
Hamiltonian H [25]. For the transformed Hamiltonian H̃ , the
density operator is ρ̃SB (t) = U †eSρSB (t)e−SU . In Ref. [17],
we have derived the master equation for the matrix elements
of the density operator,

ρ̃S(t) = TrBρ̃SB(t) =
(

ρ̃11(t) ρ̃12(t)
ρ̃21(t) ρ̃22(t)

)
, (32)

d

dt
ρ̃22(t) = −

∫ t

0
dt ′

∑
k

V 2
k [ei(ωk−W )(t−t ′) + e−i(ωk−W )(t−t ′)]ρ̃22(t ′), (33)

d

dt
ρ̃21(t) = −iWρ̃21(t) −

∫ t

0
dt ′

∑
k

[
Q2

ke
−i(ωk+W )(t−t ′) + V 2

k e−iωk(t−t ′)]ρ̃21(t ′). (34)

Another two elements are ρ̃11(t) = 1 − ρ̃22(t) and ρ̃12(t) = [ρ̃21(t)]†. The master equation has been solved by the Born
approximation and its details are listed in Ref. [17]. Here we show the main results. Equations (33) and (34) have been
solved by means of the Laplace transformation, and the solution can be expressed by integration,

ρ̃22(t) = ρ̃22(0)

2π

∫ ∞

−∞

i exp(−iωt)dω

ω − [R(W + ω) − R(W − ω)] + i[γ (W + ω) + γ (W − ω)]
, (35)

ρ̃21(t) = ρ̃21(0)

2π

∫ ∞

−∞

i exp(−iωt)dω

ω − W − �(ω) + i�(ω)
. (36)

The expressions for �(ω), �(ω), R(ω), and γ (ω) are listed in
Eqs. (26)–(29).

ρ̃21(0) and ρ̃22(0) in Eqs. (35) and (36) are the initial
density operator of the system at t = 0. First, let us see if the
coupled system and environment are initially in the ground
state |G〉. Then ρSB(0) = |G〉〈G| = e−SU |G̃〉〈G̃|U †eS and
ρ̃SB (0) = |G̃〉〈G̃| = (1 0

0 0 )|{0k}〉〈{0k}| with ρ̃21(0) = 0 and
ρ̃22(0) = 0. Equations (35) and (36) lead to ρ̃21(t) = 0
and ρ̃22(t) = 0 for all t > 0, that is, the system is always in the
ground state. This is reasonable since the ground state does
not evolve.

Second, if the initial density operator is ρSB (0) =
e−S(1 0

0 0 )|{0k}〉〈{0k}|eS and the initial reduced density op-
erator is ρS(0) = TrBρSB (0) = (1 0

0 0 ), the initial value of the
entanglement entropy is E(0) = 0, which means that by initial
preparation [4] we start from the zero entanglement state of
the coupled two-level system and environment. For Eqs. (35)
and (36), we need the corresponding initial reduced density
operator for H̃ ,

ρ̃S(0) = 1
2

(
1 − ε′/W η�/W

η�/W 1 + ε′/W

)
. (37)

To calculate the time-dependent entanglement entropy,
according to Eqs. (2) and (3), the following time-dependent

expectation values should be calculated: 〈σz(x,y)(t)〉 =
TrS{TrB[ρSB (t)σz(x,y)]}. Because of the unitary transforms, the
calculation proceeds as follows [17]:

〈σz(t)〉 = TrS{TrB[e−SUρ̃SB(t)U †eSσz]}
= TrS

(
ρ̃S(t)

[
− ε′

W
σz + η�

W
σx

])

= ε′

W
[2ρ̃22(t) − 1] + 2η�

W
Re [ρ̃21(t)] , (38)

〈σx(t)〉 = TrS{TrB[e−SUρ̃SB (t)U †eSσx]}
= TrS

(
ρ̃S(t)η

[
ε′

W
σx + η�

W
σz

])

= 2ηε′

W
Re [ρ̃21(t)] − η2�

W
[2ρ̃22(t) − 1] , (39)

〈σy(t)〉 = TrS{TrB[e−SUρ̃SB (t)U †eSσy]}
= − ηTrS[ρ̃S(t)σy] = −2η Im [ρ̃21(t)] . (40)

The equations for ρ̃22(t) and ρ̃21(t) are (35) and (36) and the
results can be obtained by numerical integration with sub-
Ohmic spectral density.

Figure 9 shows the time evolution of the usual time-
dependent expectation [1,2,17] P (t) = 〈σz(t)〉 for s = 1/2,
�/ωc = 0.1, ε/ωc = 10−5, and several values of α. Since
ε/� = 10−4 in this figure, if α = 0 we have P (t) = cos(�t)
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FIG. 9. (Color online) The time evolution of P (t) = 〈σz(t)〉 for
s = 1/2, �/ωc = 0.1, ε/ωc = 10−5, and several values of α.

and it is the unattenuated Rabi oscillation with full quantum
coherence. For weak coupling α = 0.04 (dashed-dotted line),
the Rabi oscillation and quantum coherence may be kept for
some time. But for coupling α = 0.0855 at the transition point
(solid line), the Rabi oscillation proceeds for a shorter time.
Note that for α � αc = 0.0855, the long-time limit of P (t)
is P (∞) ≈ 0 as the renormalization effect of the dissipative
interaction on the effective bias is very weak.

For α = 0.1 > αc (dashed line in Fig. 9), P (t) starts from
the initial value P (0) = 1, quickly decreases to its long-
time limit P (∞) = 〈σz〉G = −0.6564 (see Fig. 5), and then
weakly oscillates around P (∞). Here P (∞) is determined by
the renormalization effect of the dissipative interaction. For
α = 0.15 [dashed-double-dotted line with P (∞) = −0.9276]
and α = 0.2 [short-dashed line with P (∞) = −0.9722], the
renormalization effect of the dissipative interaction makes
P (t) largely biased with very weak oscillation without
coherence.

From Fig. 9, we conclude that when α < αc ≈ 0.0855, the
time evolution of P (t) is coherent [26] with the long-time limit
in the delocalized state. When α > αc, the quantum dynamics
of P (t) is decoherent and its long-time limit goes down to the
localized state.

The dynamic evolution of entanglement entropy for the
same parameters as those of Fig. 9 is shown in Fig. 10. At
t = 0, there is no entanglement between the two-level system
and environment [E(0) = 0] because of the initial preparation.
If α = 0, we have E(t) ≡ 0 for all t > 0. For α � αc, the
entanglement goes up and then oscillates around its long-time
limit [E(∞) = E(G)] for some time (dashed-dotted line for
α = 0.04 and solid line for α = 0.0855). When α = 0.1 > αc

(dashed line in Fig. 10), the entanglement oscillates with large
amplitude at the beginning and then decays quickly to its long-
time limit E(∞) = E(G) = 0.3737 (see Fig. 4). For α = 0.15
[dashed-double-dotted line with E(G) = 0.1063] and α = 0.2
[short-dashed line with E(G) = 0.0424], at the beginning the
entanglement goes up to a maximum quite close to 1 and then
decays with very weak oscillation to the long-time limit.

FIG. 10. (Color online) The time evolution of entanglement
entropy for the same parameters as those of Fig. 9.

V. CONCLUDING REMARKS

The ground state and the spectral structure of lower-lying
excited states of a dissipative two-level system coupled to a
sub-Ohmic bath (s = 1/2) with nonzero bias have been studied
using the method of unitary transformation. By calculating
the ground-state average of σz, the ground-state entanglement
entropy, and the static susceptibility of the two-level system,
we have explored the nature of the transition (crossover)
between the delocalized and localized state of the two-level
system. Furthermore, we have calculated the time-dependent
expectation 〈σz(t)〉 and the time evolution of the entanglement
entropy to show that, when the system undergoes a transition
(crossover) from a delocalized to a localized state, the time
evolution of the two-level system changes from coherent to
decoherent dynamics.

The main approximation in our treatment is the omission of
H̃2. Because of the functional form of η in Eq. (9), the operators
in H̃2 are in normal ordering and the lowest-order terms in
H̃2|G̃〉 are of the form αkαk′b

†
kb

†
k′ |G̃〉. Thus, what we dropped

are these multiboson nondiagonal transitions, and their con-
tributions to the ground-state energy and other ground-state
averages are O(g2

kg
2
k′). We would emphasize that all diagonal

bosonic transitions (to all orders) are taken into account with
the factor η [27]. Because of our treatment, we believe that
in the zero-temperature case, the contributions from these
multiboson nondiagonal transitions may be dropped safely.
The justifications of this approximation are as follows: (i)
The ground-state energy of this work is lower than that of
previous papers. (ii) The entanglement entropy of the ground
state calculated in this work is in good agreement with that of
the NRG [8]. (iii) The Shiba relation is satisfied.
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